Roman Mankowsky is awarded the Reimar Lüst Grant

of the Max Planck Society for his PhD studies

Read more

Marta Gibert receives SNSF Professorship

for her project on Functional oxide heterostructures by design.

Read more

Publication Detail / Abstract

W. Hu, S. Catalano, M. Gibert, J.-M. Triscone, A. Cavalleri

Broadband terahertz spectroscopy of the insulator-metal transition driven by coherent lattice deformation at the SmNiO3/LaAlO3 interface

published in Physical Review B on April 12, 2016
> Full text via publisher
We investigate the nonequilibrium insulator-metal transition driven in a SmNiO3 thin film by coherent optical excitation of the LaAlO3 substrate lattice. By probing the transient optical properties over a broad frequency range (100 − 800 cm−1), we analyze both the time-dependent metallic plasma and the infrared optical phonon line shapes. We show that the light-induced metallic phase in SmNiO3 has the same carrier density as the equilibrium metallic phase. We also report that the LaAlO3 substrate acts as a transducer only at the earlier time delays, as the vibrations are driven coherently. No long-lived structural rearrangement takes place in the substrate. Finally, we show that the transient insulator-metal transition occurs both below and above the Néel temperature. We conclude that the supersonic melting of magnetic order measured with ultrafast x rays is not the driving force of the formation of the metallic phase. We posit that the insulator-metal transition may origin from the rearrangement of ordered charges at the interface propagating into the film.
< Back