next Q-MAC meetings in 2018:

3rd Q-MAC symposium in Venice, May 22-25, 2018.

Next regular meeting in Paris,       November 27-28, 2018.

Read more

Roman Mankowsky is awarded the Reimar Lüst Grant

of the Max Planck Society for his PhD studies

Read more

Publication Detail / Abstract

G. Mazza

From sudden quench to adiabatic dynamics in the attractive Hubbard model

published in Physical Review B on November 7, 2017
> Full text via publisher
We study the crossover between the sudden quench limit and the adiabatic dynamics of superconducting states in the attractive Hubbard model. We focus on the dynamics induced by the change of the attractive interaction during a finite ramp time. The ramp time is varied in order to track the evolution of the dynamical phase diagram from the sudden quench to the equilibrium limit. Two different dynamical regimes are realized for quenches towards weak and strong coupling interactions. At weak coupling the dynamics depends only on the energy injected into the system, whereas a dynamics retaining memory of the initial state takes place at strong coupling. We show that this is related to a sharp transition between a weak and a strong coupling quench dynamical regime, which defines the boundaries beyond which a dynamics independent from the initial state is recovered. Comparing the dynamics in the superconducting and nonsuperconducting phases, we argue that this is due to the lack of an adiabatic connection to the equilibrium ground state for nonequilibrium superconducting states in the strong coupling quench regime.
< Back