Roman Mankowsky is awarded the Reimar Lüst Grant

of the Max Planck Society for his PhD studies

Read more

Marta Gibert receives SNSF Professorship

for her project on Functional oxide heterostructures by design.

Read more

Publication Detail / Abstract

D. Nicoletti, A. Cavalleri

Nonlinear light–matter interaction at terahertz frequencies

published in Advances in Optics and Photonics on August 18, 2016
> Full text via publisher
Strong optical pulses at mid-infrared and terahertz frequencies have recently emerged as powerful tools to manipulate and control the solid state and especially complex condensed matter systems with strongly correlated electrons. The recent developments in high-power sources in the 0.1–30 THz frequency range, both from table-top laser systems and from free-electron lasers, have provided access to excitations of molecules and solids, which can be stimulated at their resonance frequencies. Amongst these, we discuss free electrons in metals, superconducting gaps and Josephson plasmons in layered superconductors, and vibrational modes of the crystal lattice (phonons), as well as magnetic excitations. This review provides an overview and illustrative examples of how intense terahertz transients can be used to resonantly control matter, with particular focus on strongly correlated electron systems and high-temperature superconductors.
< Back