Q-MAC meetings in 2020/2021:

The Final International Symposium has been postponed until further notice.

Q-MAC regular meeting 2020 has been cancelled. 

Read more

Q-MAC Extension on the grounds of excellence

Q-MAC Project has been successfully extended for 1 year

Read more

Publication Detail / Abstract

F. Schlawin, A. S. D. Dietrich, D. Jaksch

Optical control of the current-voltage relation in stacked superconductors

published on Physical Review B on October 22, 2019
> Full text via publisher
We simulate the current-voltage relation of short layered superconductors, which we model as stacks of capacitively coupled Josephson junctions. The system is driven by external laser fields, in order to optically control the voltage drop across the junction. We identify parameter regimes in which supercurrents can be stabilized against thermally induced phase slips, thus reducing the effective voltage across the superconductor. Furthermore, single driven Josephson junctions are known to exhibit phase-locked states, where the superconducting phase is locked to the driving field. We numerically observe their persistence in the presence of thermal fluctuations and capacitive coupling between adjacent Josephson junctions. Our results indicate how macroscopic material properties can be manipulated by exploiting the large optical nonlinearities of Josephson plasmons.
< Back