Q-MAC meetings in 2020/2021:

The Final International Symposium has been postponed until further notice.

Q-MAC regular meeting 2020 has been cancelled. 

Read more

Q-MAC Extension on the grounds of excellence

Q-MAC Project has been successfully extended for 1 year

Read more

Publication Detail / Abstract

S. Rajasekaran, E. Casandruc, Y. Laplace, D. Nicoletti, G. D. Gu, S. R. Clark, D. Jaksch, A. Cavalleri

Parametric amplification of a superconducting plasma wave

published in Nature Physics online on July 11, 2016
> Full text via publisher
Many applications in photonics require all-optical manipulation of plasma waves, which can concentrate electromagnetic energy on sub-wavelength length scales. This is difficult in metallic plasmas because of their small optical nonlinearities. Some layered superconductors support Josephson plasma waves, involving oscillatory tunnelling of the superfluid between capacitively coupled planes. Josephson plasma waves are also highly nonlinear, and exhibit striking phenomena such as cooperative emission of coherent terahertz radiation, superconductor–metal oscillations and soliton formation. Here, we show that terahertz Josephson plasma waves can be parametrically amplified through the cubic tunnelling nonlinearity in a cuprate superconductor. Parametric amplification is sensitive to the relative phase between pump and seed waves, and may be optimized to achieve squeezing of the order-parameter phase fluctuations or terahertz single-photon devices.
< Back