Q-MAC meetings in 2020/2021:

The Final International Symposium has been postponed until further notice.

Q-MAC regular meeting 2020 has been cancelled. 

Read more

Q-MAC Extension on the grounds of excellence

Q-MAC Project has been successfully extended for 1 year

Read more

Publication Detail / Abstract

A. S. D. Dietrich, M. Kiffner, D. Jaksch

Probing microscopic models for system-bath interactions via parametric driving

published on Physical Review A on July 18, 2018
> Full text via publisher
We show that strong parametric driving of a quantum harmonic oscillator coupled to a thermal bath allows one to distinguish between different microscopic models for the oscillator-bath coupling. We consider a bath with an Ohmic spectral density and a model where the system-bath interaction can be tuned continuously between position and momentum coupling via the coupling angle α. We derive a master equation for the reduced density operator of the oscillator in Born-Markov approximation and investigate its quasisteady state as a function of the driving parameters, the temperature of the bath and the coupling angle α. We find that the driving introduces a strong dependence of the time-averaged variance of position and momentum on these parameters. In particular, we identify parameter regimes that maximize the α dependence and provide an intuitive explanation of our results.
< Back