Q-MAC meetings in 2020/2021:

The Final International Symposium has been postponed until further notice.

Q-MAC regular meeting 2020 has been cancelled. 

Read more

Q-MAC Extension on the grounds of excellence

Q-MAC Project has been successfully extended for 1 year

Read more

Publication Detail / Abstract

V. Sunko, F. Mazzola, S. Kitamura, S. Khim, P. Kushawaha, O. J. Clark, M. D. Watson, I. Marković, D. Biswas, L. Pourovskii, T. K. Kiim, T.-L. Lee, P. K. Thakur, H. Rosner, A. Georges, R. Moessner, T. Oka, A. P. Mackenzie, P. D.C. King

Probing spin correlations using angle-resolved photoemission in a coupled metallic/Mott insulator system

published on Science Advances on February 7, 2020
> Full text via publisher
A nearly free electron metal and a Mott insulating state can be thought of as opposite ends of the spectrum of possibilities for the motion of electrons in a solid. Understanding their interaction lies at the heart of the correlated electron problem. In the magnetic oxide metal PdCrO2 , nearly free and Mott-localized electrons exist in alternating layers, forming natural heterostructures. Using angle-resolved photoemission spectroscopy, quantitatively supported by a strong coupling analysis, we show that the coupling between these layers leads to an “intertwined” excitation that is a convolution of the charge spectrum of the metallic layer and the spin susceptibility of the Mott layer. Our findings establish PdCrO2 as a model system in which to probe Kondo lattice physics and also open new routes to use the a priori nonmagnetic probe of photoemission to gain insights into the spin susceptibility of correlated electron materials.
< Back