Q-MAC meetings in 2020:

Q-MAC regular meeting 2020 and Final International Symposium

Read more

Q-MAC Extension on the grounds of excellence

Q-MAC Project has been successfully extended for 1 year

Read more

Publication Detail / Abstract

S. Catalano, M. Gibert, J. Fowlie, J. Íñiguez, J.-M. Triscone, J. Kreisel

Rare-earth nickelates RNiO3: thin films and heterostructures

published in Reports on Progress in Physics on February 14, 2018
> Full text via publisher
This review stands in the larger framework of functional materials by focussing on heterostructures of rare-earth nickelates, described by the chemical formula RNiO3 where R is a trivalent rare-earth R  =  La, Pr, Nd, Sm, ..., Lu. Nickelates are characterized by a rich phase diagram of structural and physical properties and serve as a benchmark for the physics of phase transitions in correlated oxides where electron–lattice coupling plays a key role. Much of the recent interest in nickelates concerns heterostructures, that is single layers of thin film, multilayers or superlattices, with the general objective of modulating their physical properties through strain control, confinement or interface effects. We will discuss the extensive studies on nickelate heterostructures as well as outline different approaches to tuning and controlling their physical properties and, finally, review application concepts for future devices.
< Back