Roman Mankowsky is awarded the Reimar Lüst Grant

of the Max Planck Society for his PhD studies

Read more

Marta Gibert receives SNSF Professorship

for her project on Functional oxide heterostructures by design.

Read more

Publication Detail / Abstract

V. Khanna, R. Mankowsky, M. Petrich, H. Bromberger, S. A. Cavill, E. Möhr-Vorobeva, D. Nicoletti, Y. Laplace, G. D. Gu, J. P. Hill, M. Först, A. Cavalleri, S. S. Dhesi

Restoring interlayer Josephson coupling in La1.885Ba0.115CuO4 by charge transfer melting of stripe order

published in Physical Review B on June 30, 2016
> Full text via publisher
We show that disruption of charge-density-wave (stripe) order by charge transfer excitation, enhances the superconducting phase rigidity in La1.885Ba0.115CuO4. Time-resolved resonant soft x-ray diffraction demonstrates that charge order melting is prompt following near-infrared photoexcitation whereas the crystal structure remains intact for moderate fluences. THz time-domain spectroscopy reveals that, for the first 2 ps following photoexcitation, a new Josephson plasma resonance edge, at higher frequency with respect to the equilibrium edge, is induced indicating enhanced superconducting interlayer coupling. The fluence dependence of the charge-order melting and the enhanced superconducting interlayer coupling are correlated with a saturation limit of  ∼0.5 mJ/cm2. Using a combination of x-ray and optical spectroscopies we establish a hierarchy of timescales between enhanced superconductivity, melting of charge order, and rearrangement of the crystal structure.
< Back