
Q-MAC meetings in 2020/2021:
The Final International Symposium has been postponed until further notice.
Q-MAC regular meeting 2020 has been cancelled.
Read moreQ-MAC Extension on the grounds of excellence
Q-MAC Project has been successfully extended for 1 year
Read morePublication Detail / Abstract
Theoretical prediction and spectroscopic fingerprints of an orbital transition in CeCu2Si2
We show that the heavy-fermion compound CeCu2Si2 undergoes a transition between two regimes dominated by different crystal-field states. At low pressure P and low temperature T the Ce 4f electron resides in the atomic crystal-field ground state, while at high P or T, the electron occupancy and spectral weight is transferred to an excited crystal-field level that hybridizes more strongly with itinerant states. These findings result from first-principles dynamical-mean-field-theory calculations. We predict experimental signatures of this orbital transition in X-ray spectroscopy. The corresponding fluctuations may be responsible for the second high-pressure superconducting dome observed in this and similar materials.