Q-MAC meetings in 2020/2021:

The Final International Symposium has been postponed until further notice.

Q-MAC regular meeting 2020 has been cancelled. 

Read more

Q-MAC Extension on the grounds of excellence

Q-MAC Project has been successfully extended for 1 year

Read more

Publication Detail / Abstract

J. Mravlje, A. Georges

Thermopower and Entropy: Lessons from Sr2RuO4

published in PRL on July 12, 2016
> Full text via publisher
We calculate the in-plane Seebeck coefficient of Sr2RuO4 within a framework combining electronic structure and dynamical mean-field theory. We show that its temperature dependence can be interpreted using entropic considerations based on the Kelvin formula and that it provides a meaningful probe of the crossover out of the Fermi liquid regime into an incoherent metal. This crossover proceeds in two stages: The entropy of spin degrees of freedom is released around room temperature, while orbital degrees of freedom remain quenched up to much higher temperatures. This is confirmed by a direct calculation of the corresponding susceptibilities and is a hallmark of "Hund’s metals.” We also calculate the c-axis thermopower and predict that it exceeds substantially the in-plane one at high temperature, a peculiar behavior which originates from an interlayer “hole-filtering” mechanism.
< Back