Q-MAC meetings in 2020/2021:

The Final International Symposium has been postponed until further notice.

Q-MAC regular meeting 2020 has been cancelled. 

Read more

Q-MAC Extension on the grounds of excellence

Q-MAC Project has been successfully extended for 1 year

Read more

Publication Detail / Abstract

A. Schober, J. Fowlie, M. Guennou, M. C. Weber, H. Zhao, J. Iñiguez, M. Gibert, J.-M. Triscone, J. Kreisel

Vibrational properties of LaNiO3 films in the ultrathin regime

published on APL Materials on June 2, 2020
> Full text via publisher
Collective rotations and tilts of oxygen polyhedra play a crucial role in the physical properties of complex oxides such as magnetism and conductivity. Such rotations can be tuned by preparing thin films in which dimensionality, strain, and interface effects come into play. However, little is known of the tilt and rotational distortions in films a few unit cells thick including the question of if coherent tilt patterns survive at all in this ultrathin limit. Here, a series of films of perovskite LaNiO3 is studied and it is shown that the phonon mode related to oxygen octahedral tilts can be followed by Raman spectroscopy down to a film thickness of three pseudocubic perovskite unit cells (∼1.2 nm). To push the limits of resolution to the ultrathin regime, a statistical analysis method is introduced to separate the Raman signals of the film and substrate. Most interestingly, these analyses reveal a pronounced hardening of the tilt vibrational mode in the thinnest films. A comparison between the experimental results, first principles simulations of the atomic structure, and the standing wave model, which accounts for size effects on the phononic properties, reveals that in the ultrathin regime, the Raman spectra are a hybrid entity of both the bulk and surface phononic behavior. These results showcase Raman spectroscopy as a powerful tool to probe the behavior of perovskite films down to the ultrathin limit.
< Back